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Three-Spin Correlation of the Ising Model on the 
Generalized Checkerboard Lattice 
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The Ising model on the generalized checkerboard lattice is studied and the 
three-spin correlation function is obtained for the three nodal spins surrounding 
a unit cell of the checkerboard lattice. As an application of this result, the 
spontaneous magnetization of the internal spin within a unit cell is calculated. 

KEY WORDS: Ising model; spontaneous magnetization; generalized checker- 
board lattice; three-spin correlation. 

1. I N T R O D U C T I O N  

In 1949 Onsager announced as a conference remark the expression of the 
spontaneous magnetization for the square Ising lattice. (1) He never pub- 
lished his derivation. In 1952, Yang (2) was the first to publish a derivation, 
which is very complicated. The spontaneous magnetization has since been 
obtained for other Ising lattices, including the rectangular, (3) triangular, (4'5) 
honeycomb, (6) Kagom~, (6'7) checkerboard, (7'8) 4-8, (9'I~ and 3-12 (1~'12) 
lattices. Recently Lin and Wu (~3) considered the Ising model on the 
generalized checkerboard lattice which includes the 4-8 and 3-12 lattices as 
special cases. Using the result by Baxter and Choy (~~ on a 4-8 lattice, Lin 
and Wu derived the spontaneous magnetization of nodal spins. Their 
results are expressed in terms of the Boltzmann weights of a unit cell of the 
checkerboard lattice without specifying its cells structures. However, they 
did not compute the spontaneous magnetization of internal spins within a 
checkerboard unit cell. 

Three-spin correlation of the Ising model on a triangular lattice was 
first derived by Baxter (14) for three spins surrounding a triangle. A simpler 
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derivation was given later by Enting. (~5) Recently Baxter and Choy (j6) 
calculated several local three-spin correlations for the square lattice 
free-fermion model, the equivalent checkerboard Ising model, and the 
triangular, honeycomb, and square lattice Ising models. Similar results 
were also obtained by Lin and Wu. (17) The latter authors used the result 
on three-spin correlations to compute the spontaneous magnetization for 
the Ising model on the Union Jack lattice with the most general aniso- 
tropic interactions. The purpose of this paper is to calculate the three-spin 
correlation of the Ising model on the generalized checkerboard lattice for 
three nodal spins surrounding a unit cell. Using an identity (16'~7) which 
relates the spontaneous magnetization of the internal spin and the three- 
spin correlation of three nodal spins, I then calculate the spontaneous 
magnetization of the internal spin within a unit cell. The result is a 
generalization of the previous work by Lin and Chert, (~8) who considered 
the isotropic checkerboard lattice. 

The model is defined in Section 2. The three-spin correlation is derived 
in Section 3. In Section 4, I calculate the spontaneous magnetization of the 
internal spin on a generalized checkerboard lattice. 

2. THE M O D E L  

Consider the generalized checkerboard Ising lattice shown in Fig. 1. 
The lattice consists of nodal spins ai denoted by black dots. Each shaded 
square is a network of internal spins connected to the rest of the lattice at 
the four nodal spins. Such a network is characterized by the Boltzmann 
weight 

B(a~, o-2, 0"3, 0"4)= 2 exp(-]?H) (1) 

Fig. 1. 

o-~= _+1 

/ 

/ 

T he  generalized checkerboard  lattice. 

oil 



GeneraLized Checkerboard Lattice 633 

where fl = 1/kT,  H is the H a m i l t o n i a n  of  the ne twork ,  and  a= refers to its 

in ternal  spins. Assuming  pa i rwise  and  noncross ing  in teract ions ,  the 
B o l t z m a n n  weights satisfy the spin-reversal  symmet ry  

B((Yl, ~2, 0"3' 0 " 4 ) = B ( - - ~  --0"2, --0"3, --0"4) 

and the free-fermion cond i t ion  (19) 

B I B  2 4- B3B  4 = B s B  6 + BTB s 

where 

g , = g ( +  + + + ) ,  B 2 = B ( - + - + )  

g 3 = g ( - -  + + ) ,  B n = B ( + - - + )  

B 5 = B (  - + - -  - ), B 6 - - - -  B (  - -  - - q- ) 

B7 = B (  + - -  - -  - -  ), B 8 = B ( - - -  + - )  

I t  is convenient  to in t roduce  dua l  var iables  
combina t ions  of B /  

2 W i =  ~ XoBj 
J 

where  X 0 are elements  of  the mat r ix  

+ + + + + + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + --  + + -- 

+ --  + -- _ + --  + 

+ --  + -- + -- + -- 

I t  can be shown tha t  (2~ 

4Bi= ~ XuWj 
J 

(2) 

(3) 

(4) 

Wi, which are l inear  

(5) 

(6) 

The  spon taneous  magne t i za t ion  of  the noda l  spins has been ca lcula ted  
by Mn and  Wu.  The results  are {t3) 

(0"1)  = (0"3 )  = M F 1 ,  ( a 2 )  = ( a 4 ) = M F 2  (7) 
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where 

M 8  = ( - -  W1 --~ W2-- ~- W3-- ~- W 4 ) ( W  1 - W2 --~- m3-- ~- W4) 

X ( W  1 + W 2 - W3 ---~- W 4 ) ( W  1 + W2-[- W 3 - W4) 

•  -1 

F1 = [-(W5 W7)1/2 + (W6 W8)1/2 ] / [  W1 W3 + W2 W4 + 2( W5 W6 W7 Ws) 1/2 ] 1/2 

F2 = [- ( W6 W7 )1/2 ~_ ( W5 W8 )1/2 -]/[- W1 W4 .q_ W2 W3 _[_ 2( W5 W6 W7 W8 )1/2 -] 1/2 

3. T H R E E - S P I N  C O R R E L A T I O N  

The three-spin correlation (0"10"20"3) is invariant if we multiply the 
eight Bolzmann weights (4) by a common factor. The weights also satisfy 
the free-fermion condition (3). Therefore, only six of the eight weights are 
independent and we can calculate (o1o-2o3) if the shaded squares are 
realized by networks consisting of six interactions for which (o-lo-2o-3) is 
known. 

Lin a n d W u  (13) pointed out that the generalized checkerboard lattice 
can be realized as a 4-8 lattice as shown in Fig. 2. The spontaneous 
magnetization of the equivalent 4-8 lattice was derived by Baxter and 
Choy (1~ and we have 

(o-5) = MFs, (o-6) = MF6 (8) 
where 

F 5 = [ (  I,'~ 6 l/VT) 1/2T-.} - ( W5 ~V 8 )1/2//T] 

X [ W  1 W4 ---F W2W3-~-2(WsW6W7W8)l/2] -1/2 

F 6 = [ ( W  5 WT)1/2T * + (W6 W8)1/2/T * ] 

X [W1W3JF W2W4-F2(W5W6W7Ws) 1/2] 1/2 

T= tanh K~, T* = tanh K~ 

G I K2 ~ 1% 

K3 K i 

K4 J K/2 Kt 
0-4' % 

Fig. 2. Realization of the generalized checkerboard lattice as a 4-8 lattice. 
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The generalized checkerboard  lattice can also be realized by lattices as 
shown in Fig. 3. We have 

J4 = K; ,  L3 = K'I (9) 

because the lattices shown in Fig. 3a and 3b can be transformed by a A - Y  
t ransformat ion into the 4-8 lattice shown in Fig. 2. Consider  Fig. 3a first. 
It can be shown that  

T =  t a n h  J4 = co th ( J1  + J2 -4- J3)(B1 - B 6 ) / ( B  1 + B6) 

= coth( - J ~  + J2 - J3)(B2 - Bs)/(B2 + Bs) 

= coth( - J ,  - J2 + J3)(B3 -- J s ) / ( B 3  + B8) 

= c~ - J2 - J3)(B4 - BT)/(B4 + BT) (10) 

We can solve for Ji and the results are 

tanh 2J1 = 2T(B1B 4 - -  n 6 n 7 ) / [ ( n  I - -  B6)(B 4 - gT) -[- T2(B1 -t- B6)(B 4 + B7)] 

tanh 2J2 = 2T(B~B2 - BsB6)/[(B ~ -- B6)(B 2 -  Bs) + T2(Bx + Be)(B2 + Bs)]  

t a n h  2 J  3 = 2 T ( B ~ B  3 - B 6 B s ) / [ ( B  1 - B6)(B 3 - Bs)  -t- T 2 ( B I  + B6)(B 3 + B8) ] 

T2= ( a - b ) / ( a + b )  (11) 

where 

a = B 1 B  5 + B 2 B  6 --  B 3 B  7 - B a B  8 

b= 2(B1B2-- BTBs) 

o L5 o2 

~ O-3 
b 

Fig. 3. Two different ways of realizing of the generalized checkerboard lattice. 
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Similar results can be obtained for L i by reflecting Fig. 3a about the 
vertical line, exchanging B 5 with By,  and 9 6 with B 8. 

To calculate the three-spin correlation, we use the following iden- 
tity, (a6'17) which is a generalization of that used by Choy and Baxter (2') to 
anisotropic interactions: 

( a s )  = (tanh(J1 001 + J2002 -t- J3 ~ + J4 004) ) 

= /~1 < 001 ) "t- ~2 < 002 ) "1- ~3 < 0-3 ) "~- ~"4 < 004 ) "t-#1<002003004) -~- #2<0"3 004 001 ) 

-t- #3(004001 002 ) -I- ]'s 002003 ) (12) 

where 

)~1 = (A + B)/8,  #1 = (A - B)/8 

A = tanh(J1 + J2 + J3 -t- J4) q- tanh(J1 + J2  - "]3 - J4 )  

+ tanh(J1 - J2 - J3 -~- J4)  -~- tanh(J1 -- J2 + J3 - -  J4)  

B = tanh(J  1 - J2 - J3 - J4)  q- tanh(J1 - J2 + J3 -t- J4)  

+ tanh(Jl  + J2 - J3 + J4) + tanh(J1 + J2 + J3 - -  J4)  

and other 2i and/~i can be obtained from 21 and #1 by cyclically permuting 
1, 2, 3, 4. We define 

S~= (00j00ka,)/M, i ~ j e k r  (13) 

and rewrite (12) in the form 

I.t1Sl + I t 2 S 2 + # 3 S 3 - } - ~ 4 S 4 = F s - ( , ~ 1 +  23)FI - (22- I - .~4)F2  (14) 

where 

ul  = (B2/B5 + B s / B 2  + B3/B8 + Bs /B3  - B~/B6 - B6/B~ --  B4/B7 --  B T / B , )  

x (8 sinh 2J4)-1 

m = (B3/B8 + B , / B 3  + B 4 / ~  + B~/B4 - B1/B6 - B6/B1 - B2/B~ - B~/B~) 

x (8 sinh 2J4) 1 

I~3 = (B2/B5 + Bs /B2  + B4/B7 + BT/B4 - -  B 1 / B 6  - -  BdB1 - B3/B8 - Bs/B3) 

• (8 sinh 2J4) 1 

#4 = (B1/B6 -- B6/B~ + B2/B5 - Bs/B2 + B3/B8 - Bs/B3 + B4/B7 - B7/B4) 

• (8 sinh 2J4)-1 

/~1 -[- ~3 = (B1/B6 -- B6/B1 -- B2/B5 + Bs/B2)/4 sinh 2Ja 

22 + 24 = coth 2Ja - (B3/B8 + Ba/B7 + Bs/Bz  + B6/B1)/4 sinh 2J  4 
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We define 

G1 = [(W6 W8) 1/2-  ( W  5 W7)I/21/[W1 W3 '~ W2 W4 "3 t- 2(W5 W6 I477 W8)1/2] 1/2 

G2 = [( W5 W8) 1/2 - ( W 6 W7)1/2]/[ m l  W4 ..1r W2 W3 q_ 2( W 5 W 6 m 7 W8) 1/2"] 1/2 

(15) 

Substituting the expression (8) for F5 into (14), we get 

a,(S1 + $3) + b~(S2 + $4) + c~(S~ - $3) + d~(S2 - $4) = 2elF1 + 2f~F2 + 8G2 

where 

a 1 = B2/B 5 + Bs/B2 

bt = B3/B8 + B4/B7 

c I = B3/B 8 -t- Bs /B 3 

d 1 = B7/B 4 -t- Bs /B  3 

el = B2/B5 - Bs/B2 

f l  = B3/B8 + B4/B7 

Similarly, we have the identity 

-- B1/B 6 -- B6/B 1 

- B s / B 2 - B 6 / B 1  

- B4/B 7 - B7/B 4 

- B 1 / B 6 -  B2/B5 

+ B 6 / B I - B 1 / B 6  

+ Bs/B2 + B6/B~ 

(16) 

(0"6) = (tanh(Ll0"1 + L20"2 + L30"3 -}- L404) )  (17) 

Following exactly the same procedure, we get 

ae(S1 + $3) + b2($2 + $4) + c2($1 - $3) + d2($2 - $4) = 2ezF~ + 2f2F 2 + 8G 1 

(18) 

Notice that (18) can be obtained from (16) by exchanging Bs,  B 6, W 3, W 5, 

Sl, $3, and F1, respectively, with BT, B8, W4, W6, $2, $4, and F 2. 
Reflecting the lattices shown in Fig. 3 about the horizontal line, we get 

two more independent equations from (16) and (18) by exchanging Bs,  B6, 

W3, WT, $1, $2, and F1, respectively, with B8, B7, W4, W8, $4, S 3, and 
F2: 

a3(S1 + $2) + b3(S~ + $4) + c3($1 - $3) + d3(S2 - $4) = 2e3F~ + 2f3F2 - 8G~ 

(19) 

a4(S1 + S2) -t- b4(S 2 + $ 4 )  + c 4 ( S  1 - S3) --~ d4(S 2 - -  $ 4 )  = 2e4F 1 + 2 f4F 2 -- 8G 2 

(20) 
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Our goal is to calculate Si from four linear 
(18)-(20). After a lengthy calculation, we finally get 

where 

E =  

equations 

$1 = E l  + 2(plF1 + qlG1 + rlF2 + slG2)/E 

$2 = F2 -~- 2(p2F2 + q2G2 + r2F1 + s2GI)/E 

$ 3  = F1 + 2(p3F1 - q3 G1 + r3F2 - $3 Gz)/E 

$4 = F2 + 2(p4 F2 - q4 G2 + r4 F1 - s4 G1 )/E 

Lin 

(16) and 

(21) 

ws w6 w ,  - wl  w4 

Pt = ( B I B 2 -  B7B8)(B25 + B ~ ) -  BsB6(B 2+ B~ + B 2+ B~) 

+ (BIB7 + B2Bs)(B4B5 + B3B6) 

ql = (B1B2 -- B7Bs)(B3Bs + B4B6 - BIB7 - B2Bs) 

+ (B1B8 + B2BT)(B3B4 + BsB6) 

- -  (BIB 2 -+- B7B8)(B3B 6 -1- B4B5) 

= B4IB  - + B6(B  - + - BIB )IB B6 + B4B ) 

S 1 = (O 1 02 - -  B7Bs)[(B 3 - B4)(B 7 + 98) -k- (B 6 --B5)(B 1 + B2) ] 

$2 is obtained from $1 by the exchange of Bs with B7, and B 6 with B 8. One 
obtains $3 by the exchange of B 5 with B6,  and B 7 with B 8. One obtains $4 
by the exchange of B 5 with Bs, and B 6 with B 7. 

In the special case of the checkerboard lattice with four interactions 
(see Fig. 4), we have 

$1 = 1 - l - exp( -2P*)  + exp( - 2 J 2  - 2J3)]/sinh 2J2 sinh 2J  3 (22) 

where 

cosh 2P* = ( W6 W8 + Ws WT )/ ( W6 W 8 -  Ws W7 ) 

= (cosh 2J1 cosh 2J4 sinh 2J2 sinh 2J3 

+ sinh 2J  1 sinh 2J  a cosh 2J  2 cosh 2J3) 

x (sinh 2J2 sinh 2J  3 - sinh 2J  1 sinh 2J4)-1 

Equation (22) was first obtained by Baxter and Choy. (16) Their derivation 
is based on the concept of the Z-invariant, (22) which cannot be applied to 
an arbitrary generalized checkerboard lattice. 
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Ca 

Fig. 4. A checkerboard  lat t ice wi th  four interact ions.  

In the special case of an isotropic generalized checkerboard lattice we 
have 

B3 = B 4 ,  B5 = B6  = B7 = B8 

W 3 = W4, W 5 =  W 6 =  W 7~-- W 8 

S / F 1  = 1 - 4 B ~ / ( B I  - B 3 )  2 

= 1 - (W 1 --  W2)2/4(W3 + Ws) 2 (23) 

which was first derived by Lin and Chen. (is) 
In the special case of B 5 = B 6 ,  B 7 = B8, we have 

W 5 = W6, W 7 = W 8 

S~ = F1 + 4TBs(W5 WT)m/R~ R2[ W5 W7 + (W~ W2 W3 W4)l/2J (24) 

where 

8 1 =  ( W  1 m 3-l- m 2 w  4--[-2W 5W7) 1/2 

122= (Wl m4.-~- W2W3 + 2WsW7) m 

T = ( Wl  W 4 --  W 2 W3)( W5 -]- W7)/ER 1 -~- ( W1 W3) 1/2 + ( W2 W4) 1/2"] 

+ ( W 1 W ,  - W 2 W3)E( W 1 m3) 1/2 + ( W 2 W4) 1/2"] 

x Ew~ + w~ + (w~ w2) ~/2 + (w3 w , )  ~/~3 -1 

+ [" W2 W3( WI + W4) - W 1 W4( W 2 + W3) --  4W5 W 7 B s ]  

X r R  2 -[- ( W  1 W4) 1/2 + ( W  2 W3) 1/2] ' 

- 2BsE ( W~ W4) 1/2 -q- ( W 2 W3)1/2 3 
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4. S P O N T A N E O U S  M A G N E T I Z A T I O N  

Consider a generalized checkerboard lattice where the Hamiltonian of 
the unit cell includes multispin interactions which involve only an even 
number of spins. The spontaneous magnetization <0- > of the internal spin 
a is a function of the Boltzmann weights 

B(Ol, 0-2' 0"3' 0"4 [ a ) = B ( - a l ,  -0-2, --0-3 '  --0"4 I--0") = ~'~f exp(-f lH) 
a~= _+I 

(25) 

where the prime means summing over all internal spins except a. We define 

B~ = B ( +  + + + l - - ) ,  

B? = B ( +  + - - I + ) ,  

B~ = B ( + - +  +l__), 

B~ = B ( +  - - -  I-+), 

B f  = B ( + - + - I + )  

B~ = B ( + - -  +l_+) 

B~ = B ( +  + + - I f )  

B~ = B ( + + - + [ _ + )  

R, = (B + - B? )/(B,, + + B~- ) (26) 

The network characterized by the 16 Boltzmann weights (25) is 
equivalent to a star network as shown in Fig. 5 with ten pairwise and five 
four-spin interactions such that 

B(O'l ,  0"2, 0"3, 0"4 I 0") = P exp(E) (27) 

Fig. 5. A star network with two-spin and four-spin interactions (only pairwise nearest- 
neigbor interactions are shown). 
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where  

E =  a ( J l a  1 + J202 --I- J3003 -[- J4004 + K1 0020"3 004 

q- K2 0"3 004 00 1 --b K3 04 o 1 0- 2 + K400 1 0-203) 

+ J'l 610~ + J2002 (73 + Jr3003004 + J'4004001 

+ L001 003 + L'002(r4 + K001 002003004 

I t  fol lows f rom (27) tha t  we have  the iden t i ty  

(00) = ( t a n h ( J 1  ~r 1 + J2 002 + J3 003 -t- J4 0"4 + K1 0"2 003 G4 

+ K2 ~ 004 ~ t + K3 004 001 002 -}- K4001 002003)) 

4 
= ~,, 2i(00i)  + #1 (0"2003 004) J- ~2(00300401 ) 

i=1 

"t- ]2 3 (004001 002 ) ~- ]24(001 002003 ) 

where  

(28) 

21 = (A  + B ) / 8 ,  #1 = (A  - B ) / 8  

A = t a n h ( J l + J 2 + J 3 + J 4 + K l + K z + K 3 + K 4 )  

+ t anh(J1  - ,/2 + ,/3 - J4 + KI  - / s  + K3 - K4) 

+ t a n h ( J t  + ,/2 - J3 - ,/4 + K1 + K2 - K3 - K4) 

+ t anh(J1  - J2 - J3 + J4 + K~ - / ( 2  - K3 + K4) 

B = t a n h ( J  1 - ./2 - J3 - ,/4 - K1 + K2 + K3 + K4) 

+ t a n h ( J 1 - J 2 + J 3 + J n - K I  + K 2 - K 3 - K 4 )  

+ t anh ( J1  + ,/2 - J3 + J4 - K1 - K2 + K3 - K4) 

+ t anh ( J1  + -/2 + J3 - J4 - K1 - K2 - K3 + K4) 

a n d  o the r  ,Li a n d  /~ are  o b t a i n e d  f rom 21 a n d  #1 by  cycl ical ly p e r m u t i n g  
1, 2, 3, 4. W h e n  K ~ =  0, (28) reduces  to (12). After  some  a lgebra  we o b t a i n  

where  

2i = (ai + bi)/8, #~-= (a~-  bi)/8 (29) 

a l  = R l  + R2 + R3 + R4, 

a2 = R1 --  R2 -1- R 3 - R4, 

a3 = R l  + R2 --  R3 --  R4, 

a 4 = R 1 -- R 2 -- R 3 q- R4, 

bl = Rs-F R6 q- R7 + R8 

b2= - R s  + R 6 -  R7 + R 8 

b3 "=" R5 + R6 - R7 - R8 

b4 = R5 - R6 - R7 + R8 

822/56/5-6-6 
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When the Boltzmann weights satisfy the condition (3), the one-spin 
and three-spin correlations of the nodal spins are given by (7) and (21) and 
we have 

(a)=M[(2a +23)Fl +(22+24)F2+ ~ #iSi] 
i = l  

(30) 

Fisher (23) proved that a triangular network of interactions with spin- 
reversal symmyetry is equivalent to a triangle with three pairwise inter- 
actions. Therefore a checkerboard unit cell consisting of one or several 
triangular networks always satisfies the condition (3). The special case of 
the triangular checkerbroard lattice was studied by Lin. (24) 

5. S U M M A R Y  

I have obtained the three-spin correlation of the Ising model for the 
three nodal spins surrounding a unit cell of the generalized checkerboard 
lattice. The result is expressed in terms of Boltzmann weights of a unit cell 
of the checkerboard lattice without specifying its cell structure. The central 
theme of the calculation is the use of (12), in which (trs) is known from 
ref. 16 and the other one-spin correlations are known from ref. 17. The four 
unknown three-spin correlations are then obtained by solving (12) and 
three similar equations obtained by appropriate permutations of indices. 
The result is given by (21). 

I have considered the Ising model on a generalized checkerboard lat- 
tice and derived the spontaneous magnetization of the internal spin within 
a unit cell. The spontaneous magnetization is a linear combination of the 
three-spin correlations. The result is given by (30). 
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