Three-Spin Correlation of the Ising Model on the Generalized Checkerboard Lattice

\author{

Abstract

The Ising model on the generalized checkerboard lattice is studied and the three-spin correlation function is obtained for the three nodal spins surrounding a unit cell of the checkerboard lattice. As an application of this result, the spontaneous magnetization of the internal spin within a unit cell is calculated.

}

KEY WORDS: Ising model; spontaneous magnetization; generalized checkerboard lattice; three-spin correlation.

1. INTRODUCTION

In 1949 Onsager announced as a conference remark the expression of the spontaneous magnetization for the square Ising lattice. ${ }^{(1)}$ He never published his derivation. In 1952, Yang ${ }^{(2)}$ was the first to publish a derivation, which is very complicated. The spontaneous magnetization has since been obtained for other Ising lattices, including the rectangular, ${ }^{(3)}$ triangular, ${ }^{(4,5)}$ honeycomb, ${ }^{(6)}$ Kagomé, ${ }^{(6,7)}$ checkerboard, ${ }^{(7,8)} 4-8,{ }^{(9,10)}$ and 3-12 ${ }^{(11,12)}$ lattices. Recently Lin and $\mathrm{Wu}^{(13)}$ considered the Ising model on the generalized checkerboard lattice which includes the 4-8 and 3-12 lattices as special cases. Using the result by Baxter and Choy ${ }^{(10)}$ on a 4-8 lattice, Lin and Wu derived the spontaneous magnetization of nodal spins. Their results are expressed in terms of the Boltzmann weights of a unit cell of the checkerboard lattice without specifying its cells structures. However, they did not compute the spontaneous magnetization of internal spins within a checkerboard unit cell.

Three-spin correlation of the Ising model on a triangular lattice was first derived by Baxter ${ }^{(14)}$ for three spins surrounding a triangle. A simpler

[^0]derivation was given later by Enting. ${ }^{(15)}$ Recently Baxter and Choy ${ }^{(16)}$ calculated several local three-spin correlations for the square lattice free-fermion model, the equivalent checkerboard Ising model, and the triangular, honeycomb, and square lattice Ising models. Similar results were also obtained by Lin and $\mathrm{Wu}{ }^{(17)}$ The latter authors used the result on three-spin correlations to compute the spontaneous magnetization for the Ising model on the Union Jack lattice with the most general anisotropic interactions. The purpose of this paper is to calculate the three-spin correlation of the Ising model on the generalized checkerboard lattice for three nodal spins surrounding a unit cell. Using an identity ${ }^{(16,17)}$ which relates the spontaneous magnetization of the internal spin and the threespin correlation of three nodal spins, I then calculate the spontaneous magnetization of the internal spin within a unit cell. The result is a generalization of the previous work by Lin and Chen, ${ }^{(18)}$ who considered the isotropic checkerboard lattice.

The model is defined in Section 2. The three-spin correlation is derived in Section 3. In Section 4, I calculate the spontaneous magnetization of the internal spin on a generalized checkerboard lattice.

2. THE MODEL

Consider the generalized checkerboard Ising lattice shown in Fig. 1. The lattice consists of nodal spins σ_{i} denoted by black dots. Each shaded square is a network of internal spins connected to the rest of the lattice at the four nodal spins. Such a network is characterized by the Boltzmann weight

$$
\begin{equation*}
B\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)=\sum_{\sigma_{\alpha}= \pm 1} \exp (-\beta H) \tag{1}
\end{equation*}
$$

Fig. 1. The generalized checkerboard lattice.
where $\beta=1 / k T, H$ is the Hamiltonian of the network, and σ_{α} refers to its internal spins. Assuming pairwise and noncrossing interactions, the Boltzmann weights satisfy the spin-reversal symmetry

$$
\begin{equation*}
B\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)=B\left(-\sigma_{1},-\sigma_{2},-\sigma_{3},-\sigma_{4}\right) \tag{2}
\end{equation*}
$$

and the free-fermion condition ${ }^{(19)}$

$$
\begin{equation*}
B_{1} B_{2}+B_{3} B_{4}=B_{5} B_{6}+B_{7} B_{8} \tag{3}
\end{equation*}
$$

where

$$
\begin{array}{ll}
B_{1}=B(++++), & B_{2}=B(-+-+) \\
B_{3}=B(--++), & B_{4}=B(+--+) \\
B_{5}=B(-+--), & B_{6}=B(---+) \tag{4}\\
B_{7}=B(+---), & B_{8}=B(--+-)
\end{array}
$$

It is convenient to introduce dual variables W_{i}, which are linear combinations of B_{j} :

$$
\begin{equation*}
2 W_{i}=\sum_{j} X_{i j} B_{j} \tag{5}
\end{equation*}
$$

where $X_{i j}$ are elements of the matrix

$$
\begin{array}{cccccccc}
+ & + & + & + & + & + & + & + \\
+ & + & + & + & - & - & - & - \\
+ & + & - & - & - & - & + & + \\
+ & + & - & - & + & + & - & - \\
+ & - & - & + & + & - & - & + \\
+ & - & - & + & - & + & + & - \\
+ & - & + & - & - & + & - & + \\
+ & - & + & - & + & - & + & -
\end{array}
$$

It can be shown that ${ }^{(20)}$

$$
\begin{equation*}
4 B_{i}=\sum_{j} X_{i j} W_{j} \tag{6}
\end{equation*}
$$

The spontaneous magnetization of the nodal spins has been calculated by Lin and Wu . The results are ${ }^{(13)}$

$$
\begin{equation*}
\left\langle\sigma_{1}\right\rangle=\left\langle\sigma_{3}\right\rangle=M F_{1}, \quad\left\langle\sigma_{2}\right\rangle=\left\langle\sigma_{4}\right\rangle=M F_{2} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
M^{8}= & \left(-W_{1}+W_{2}+W_{3}+W_{4}\right)\left(W_{1}-W_{2}+W_{3}+W_{4}\right) \\
& \times\left(W_{1}+W_{2}-W_{3}+W_{4}\right)\left(W_{1}+W_{2}+W_{3}-W_{4}\right) \\
& \times\left(16 W_{5} W_{6} W_{7} W_{8}\right)^{-1} \\
F_{1}= & {\left[\left(W_{5} W_{7}\right)^{1 / 2}+\left(W_{6} W_{8}\right)^{1 / 2}\right] /\left[W_{1} W_{3}+W_{2} W_{4}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{1 / 2} } \\
F_{2}= & {\left[\left(W_{6} W_{7}\right)^{1 / 2}+\left(W_{5} W_{8}\right)^{1 / 2}\right] /\left[W_{1} W_{4}+W_{2} W_{3}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{1 / 2} }
\end{aligned}
$$

3. THREE-SPIN CORRELATION

The three-spin correlation $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$ is invariant if we multiply the eight Bolzmann weights (4) by a common factor. The weights also satisfy the free-fermion condition (3). Therefore, only six of the eight weights are independent and we can calculate $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$ if the shaded squares are realized by networks consisting of six interactions for which $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$ is known.

Lin and $\mathrm{Wu}^{(13)}$ pointed out that the generalized checkerboard lattice can be realized as a $4-8$ lattice as shown in Fig. 2. The spontaneous magnetization of the equivalent $4-8$ lattice was derived by Baxter and Choy ${ }^{(10)}$ and we have

$$
\begin{equation*}
\left\langle\sigma_{5}\right\rangle=M F_{5}, \quad\left\langle\sigma_{6}\right\rangle=M F_{6} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{5}= & {\left[\left(W_{6} W_{7}\right)^{1 / 2} T+\left(W_{5} W_{8}\right)^{1 / 2} / T\right] } \\
& \times\left[W_{1} W_{4}+W_{2} W_{3}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{-1 / 2} \\
F_{6}= & {\left[\left(W_{5} W_{7}\right)^{1 / 2} T^{*}+\left(W_{6} W_{8}\right)^{1 / 2} / T^{*}\right] } \\
& \times\left[W_{1} W_{3}+W_{2} W_{4}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{-1 / 2} \\
& T=\tanh K_{2}^{\prime}, \quad T^{*}=\tanh K_{1}^{\prime}
\end{aligned}
$$

Fig. 2. Realization of the generalized checkerboard lattice as a 4-8 lattice.

The generalized checkerboard lattice can also be realized by lattices as shown in Fig. 3. We have

$$
\begin{equation*}
J_{4}=K_{2}^{\prime}, \quad L_{3}=K_{1}^{\prime} \tag{9}
\end{equation*}
$$

because the lattices shown in Fig. 3a and 3 b can be transformed by a $\Delta-Y$ transformation into the 4-8 lattice shown in Fig. 2. Consider Fig. 3a first. It can be shown that

$$
\begin{align*}
T=\tanh J_{4} & =\operatorname{coth}\left(J_{1}+J_{2}+J_{3}\right)\left(B_{1}-B_{6}\right) /\left(B_{1}+B_{6}\right) \\
& =\operatorname{coth}\left(-J_{1}+J_{2}-J_{3}\right)\left(B_{2}-B_{5}\right) /\left(B_{2}+B_{5}\right) \\
& =\operatorname{coth}\left(-J_{1}-J_{2}+J_{3}\right)\left(B_{3}-J_{8}\right) /\left(B_{3}+B_{8}\right) \\
& =\operatorname{coth}\left(J_{1}-J_{2}-J_{3}\right)\left(B_{4}-B_{7}\right) /\left(B_{4}+B_{7}\right) \tag{10}
\end{align*}
$$

We can solve for J_{i} and the results are
$\tanh 2 J_{1}=2 T\left(B_{1} B_{4}-B_{6} B_{7}\right) /\left[\left(B_{1}-B_{6}\right)\left(B_{4}-B_{7}\right)+T^{2}\left(B_{1}+B_{6}\right)\left(B_{4}+B_{7}\right)\right]$
$\tanh 2 J_{2}=2 T\left(B_{1} B_{2}-B_{5} B_{6}\right) /\left[\left(B_{1}-B_{6}\right)\left(B_{2}-B_{5}\right)+T^{2}\left(B_{1}+B_{6}\right)\left(B_{2}+B_{5}\right)\right]$
$\tanh 2 J_{3}=2 T\left(B_{1} B_{3}-B_{6} B_{8}\right) /\left[\left(B_{1}-B_{6}\right)\left(B_{3}-B_{8}\right)+T^{2}\left(B_{1}+B_{6}\right)\left(B_{3}+B_{8}\right)\right]$

$$
\begin{equation*}
T^{2}=(a-b) /(a+b) \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=B_{1} B_{5}+B_{2} B_{6}-B_{3} B_{7}-B_{4} B_{8} \\
& b=2\left(B_{1} B_{2}-B_{7} B_{8}\right)
\end{aligned}
$$

C

b

Fig. 3. Two different ways of realizing of the generalized checkerboard lattice.

Similar results can be obtained for L_{i} by reflecting Fig. 3a about the vertical line, exchanging B_{5} with B_{7}, and B_{6} with B_{8}.

To calculate the three-spin correlation, we use the following identity, ${ }^{(16,17)}$ which is a generalization of that used by Choy and Baxter ${ }^{(21)}$ to anisotropic interactions:

$$
\begin{align*}
\left\langle\sigma_{5}\right\rangle= & \left\langle\tanh \left(J_{1} \sigma_{1}+J_{2} \sigma_{2}+J_{3} \sigma_{3}+J_{4} \sigma_{4}\right)\right\rangle \\
= & \lambda_{1}\left\langle\sigma_{1}\right\rangle+\lambda_{2}\left\langle\sigma_{2}\right\rangle+\lambda_{3}\left\langle\sigma_{3}\right\rangle+\lambda_{4}\left\langle\sigma_{4}\right\rangle+\mu_{1}\left\langle\sigma_{2} \sigma_{3} \sigma_{4}\right\rangle+\mu_{2}\left\langle\sigma_{3} \sigma_{4} \sigma_{1}\right\rangle \\
& +\mu_{3}\left\langle\sigma_{4} \sigma_{1} \sigma_{2}\right\rangle+\mu_{4}\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle \tag{12}
\end{align*}
$$

where

$$
\begin{gathered}
\lambda_{1}=(A+B) / 8, \quad \mu_{1}=(A-B) / 8 \\
A=\tanh \left(J_{1}+J_{2}+J_{3}+J_{4}\right)+\tanh \left(J_{1}+J_{2}-J_{3}-J_{4}\right) \\
+\tanh \left(J_{1}-J_{2}-J_{3}+J_{4}\right)+\tanh \left(J_{1}-J_{2}+J_{3}-J_{4}\right) \\
B=\tanh \left(J_{1}-J_{2}-J_{3}-J_{4}\right)+\tanh \left(J_{1}-J_{2}+J_{3}+J_{4}\right) \\
+\tanh \left(J_{1}+J_{2}-J_{3}+J_{4}\right)+\tanh \left(J_{1}+J_{2}+J_{3}-J_{4}\right)
\end{gathered}
$$

and other λ_{i} and μ_{i} can be obtained from λ_{1} and μ_{1} by cyclically permuting $1,2,3,4$. We define

$$
\begin{equation*}
S_{i}=\left\langle\sigma_{j} \sigma_{k} \sigma_{t}\right\rangle / M, \quad i \neq j \neq k \neq l \tag{13}
\end{equation*}
$$

and rewrite (12) in the form

$$
\begin{equation*}
\mu_{1} S_{1}+\mu_{2} S_{2}+\mu_{3} S_{3}+\mu_{4} S_{4}=F_{5}-\left(\lambda_{1}+\lambda_{3}\right) F_{1}-\left(\lambda_{2}+\lambda_{4}\right) F_{2} \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
\mu_{1}= & \left(B_{2} / B_{5}+B_{5} / B_{2}+B_{3} / B_{8}+B_{8} / B_{3}-B_{1} / B_{6}-B_{6} / B_{1}-B_{4} / B_{7}-B_{7} / B_{4}\right) \\
& \times\left(8 \sinh 2 J_{4}\right)^{-1} \\
\mu_{2}= & \left(B_{3} / B_{8}+B_{8} / B_{3}+B_{4} / B_{7}+B_{7} / B_{4}-B_{1} / B_{6}-B_{6} / B_{1}-B_{2} / B_{5}-B_{5} / B_{2}\right) \\
& \times\left(8 \sinh 2 J_{4}\right)^{-1} \\
\mu_{3}= & \left(B_{2} / B_{5}+B_{5} / B_{2}+B_{4} / B_{7}+B_{7} / B_{4}-B_{1} / B_{6}-B_{6} / B_{1}-B_{3} / B_{8}-B_{8} / B_{3}\right) \\
& \times\left(8 \sinh 2 J_{4}\right)^{-1} \\
\mu_{4}= & \left(B_{1} / B_{6}-B_{6} / B_{1}+B_{2} / B_{5}-B_{5} / B_{2}+B_{3} / B_{8}-B_{8} / B_{3}+B_{4} / B_{7}-B_{7} / B_{4}\right) \\
& \times\left(8 \sinh 2 J_{4}\right)^{-1} \\
\lambda_{1}+\lambda_{3}= & \left(B_{1} / B_{6}-B_{6} / B_{1}-B_{2} / B_{5}+B_{5} / B_{2}\right) / 4 \sinh 2 J_{4} \\
\lambda_{2}+\lambda_{4}= & \operatorname{coth} 2 J_{4}-\left(B_{3} / B_{8}+B_{4} / B_{7}+B_{5} / B_{2}+B_{6} / B_{1}\right) / 4 \sinh 2 J_{4}
\end{aligned}
$$

We define
$G_{1}=\left[\left(W_{6} W_{8}\right)^{1 / 2}-\left(W_{5} W_{7}\right)^{1 / 2}\right] /\left[W_{1} W_{3}+W_{2} W_{4}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{1 / 2}$
$G_{2}=\left[\left(W_{5} W_{8}\right)^{1 / 2}-\left(W_{6} W_{7}\right)^{1 / 2}\right] /\left[W_{1} W_{4}+W_{2} W_{3}+2\left(W_{5} W_{6} W_{7} W_{8}\right)^{1 / 2}\right]^{1 / 2}$

Substituting the expression (8) for F_{5} into (14), we get
$a_{1}\left(S_{1}+S_{3}\right)+b_{1}\left(S_{2}+S_{4}\right)+c_{1}\left(S_{1}-S_{3}\right)+d_{1}\left(S_{2}-S_{4}\right)=2 e_{1} F_{1}+2 f_{1} F_{2}+8 G_{2}$
where

$$
\begin{aligned}
& a_{1}=B_{2} / B_{5}+B_{5} / B_{2}-B_{1} / B_{6}-B_{6} / B_{1} \\
& b_{1}=B_{3} / B_{8}+B_{4} / B_{7}-B_{5} / B_{2}-B_{6} / B_{1} \\
& c_{1}=B_{3} / B_{8}+B_{8} / B_{3}-B_{4} / B_{7}-B_{7} / B_{4} \\
& d_{1}=B_{7} / B_{4}+B_{8} / B_{3}-B_{1} / B_{6}-B_{2} / B_{5} \\
& e_{1}=B_{2} / B_{5}-B_{5} / B_{2}+B_{6} / B_{1}-B_{1} / B_{6} \\
& f_{1}=B_{3} / B_{8}+B_{4} / B_{7}+B_{5} / B_{2}+B_{6} / B_{1}
\end{aligned}
$$

Similarly, we have the identity

$$
\begin{equation*}
\left\langle\sigma_{6}\right\rangle=\left\langle\tanh \left(L_{1} \sigma_{1}+L_{2} \sigma_{2}+L_{3} \sigma_{3}+L_{4} \sigma_{4}\right)\right\rangle \tag{17}
\end{equation*}
$$

Following exactly the same procedure, we get
$a_{2}\left(S_{1}+S_{3}\right)+b_{2}\left(S_{2}+S_{4}\right)+c_{2}\left(S_{1}-S_{3}\right)+d_{2}\left(S_{2}-S_{4}\right)=2 e_{2} F_{1}+2 f_{2} F_{2}+8 G_{1}$

Notice that (18) can be obtained from (16) by exchanging $B_{5}, B_{6}, W_{3}, W_{5}$, S_{1}, S_{3}, and F_{1}, respectively, with $B_{7}, B_{8}, W_{4}, W_{6}, S_{2}, S_{4}$, and F_{2}.

Reflecting the lattices shown in Fig. 3 about the horizontal line, we get two more independent equations from (16) and (18) by exchanging B_{5}, B_{6}, $W_{3}, W_{7}, S_{1}, S_{2}$, and F_{1}, respectively, with $B_{8}, B_{7}, W_{4}, W_{8}, S_{4}, S_{3}$, and F_{2} :
$a_{3}\left(S_{1}+S_{2}\right)+b_{3}\left(S_{2}+S_{4}\right)+c_{3}\left(S_{1}-S_{3}\right)+d_{3}\left(S_{2}-S_{4}\right)=2 e_{3} F_{1}+2 f_{3} F_{2}-8 G_{1}$
$a_{4}\left(S_{1}+S_{2}\right)+b_{4}\left(S_{2}+S_{4}\right)+c_{4}\left(S_{1}-S_{3}\right)+d_{4}\left(S_{2}-S_{4}\right)=2 e_{4} F_{1}+2 f_{4} F_{2}-8 G_{2}$

Our goal is to calculate S_{i} from four linear equations (16) and (18)-(20). After a lengthy calculation, we finally get

$$
\begin{align*}
& S_{1}=F_{1}+2\left(p_{1} F_{1}+q_{1} G_{1}+r_{1} F_{2}+s_{1} G_{2}\right) / E \\
& S_{2}=F_{2}+2\left(p_{2} F_{2}+q_{2} G_{2}+r_{2} F_{1}+s_{2} G_{1}\right) / E \tag{21}\\
& S_{3}=F_{1}+2\left(p_{3} F_{1}-q_{3} G_{1}+r_{3} F_{2}-s_{3} G_{2}\right) / E \\
& S_{4}=F_{2}+2\left(p_{4} F_{2}-q_{4} G_{2}+r_{4} F_{1}-s_{4} G_{1}\right) / E
\end{align*}
$$

where

$$
\begin{aligned}
E= & W_{5} W_{6} W_{7} W_{8}-W_{1} W_{2} W_{3} W_{4} \\
p_{1}= & \left(B_{1} B_{2}-B_{7} B_{8}\right)\left(B_{5}^{2}+B_{6}^{2}\right)-B_{5} B_{6}\left(B_{1}^{2}+B_{2}^{2}+B_{7}^{2}+B_{8}^{2}\right) \\
& +\left(B_{1} B_{7}+B_{2} B_{8}\right)\left(B_{4} B_{5}+B_{3} B_{6}\right) \\
q_{1}= & \left(B_{1} B_{2}-B_{7} B_{8}\right)\left(B_{3} B_{5}+B_{4} B_{6}-B_{1} B_{7}-B_{2} B_{8}\right) \\
& +\left(B_{1} B_{8}+B_{2} B_{7}\right)\left(B_{3} B_{4}+B_{5} B_{6}\right) \\
& -\left(B_{1} B_{2}+B_{7} B_{8}\right)\left(B_{3} B_{6}+B_{4} B_{5}\right) \\
r_{1}= & B_{3} B_{4}\left(B_{7}^{2}-B_{8}^{2}\right)+B_{5} B_{6}\left(B_{1}^{2}-B_{2}^{2}\right)+\left(B_{2} B_{8}-B_{1} B_{7}\right)\left(B_{3} B_{6}+B_{4} B_{5}\right) \\
s_{1}= & \left(B_{1} B_{2}-B_{7} B_{8}\right)\left[\left(B_{3}-B_{4}\right)\left(B_{7}+B_{8}\right)+\left(B_{6}-B_{5}\right)\left(B_{1}+B_{2}\right)\right]
\end{aligned}
$$

S_{2} is obtained from S_{1} by the exchange of B_{5} with B_{7}, and B_{6} with B_{8}. One obtains S_{3} by the exchange of B_{5} with B_{6}, and B_{7} with B_{8}. One obtains S_{4} by the exchange of B_{5} with B_{8}, and B_{6} with B_{7}.

In the special case of the checkerboard lattice with four interactions (see Fig. 4), we have

$$
\begin{equation*}
S_{1}=1-\left[\exp \left(-2 P^{*}\right)+\exp \left(-2 J_{2}-2 J_{3}\right)\right] / \sinh 2 J_{2} \sinh 2 J_{3} \tag{22}
\end{equation*}
$$

where

$$
\begin{aligned}
\cosh 2 P^{*}= & \left(W_{6} W_{8}+W_{5} W_{7}\right) /\left(W_{6} W_{8}-W_{5} W_{7}\right) \\
= & \left(\cosh 2 J_{1} \cosh 2 J_{4} \sinh 2 J_{2} \sinh 2 J_{3}\right. \\
& \left.+\sinh 2 J_{1} \sinh 2 J_{4} \cosh 2 J_{2} \cosh 2 J_{3}\right) \\
& \times\left(\sinh 2 J_{2} \sinh 2 J_{3}-\sinh 2 J_{1} \sinh 2 J_{4}\right)^{-1}
\end{aligned}
$$

Equation (22) was first obtained by Baxter and Choy. ${ }^{(16)}$ Their derivation is based on the concept of the Z-invariant, ${ }^{(22)}$ which cannot be applied to an arbitrary generalized checkerboard lattice.

Fig. 4. A checkerboard lattice with four interactions.
In the special case of an isotropic generalized checkerboard lattice we have

$$
\begin{gather*}
B_{3}=B_{4}, \quad B_{5}=B_{6}=B_{7}=B_{8} \\
W_{3}=W_{4}, \quad W_{5}=W_{6}=W_{7}=W_{8} \\
S / F_{1}=1-4 B_{5}^{2} /\left(B_{1}-B_{3}\right)^{2} \\
=1-\left(W_{1}-W_{2}\right)^{2} / 4\left(W_{3}+W_{5}\right)^{2} \tag{23}
\end{gather*}
$$

which was first derived by Lin and Chen. ${ }^{(18)}$
In the special case of $B_{5}=B_{6}, B_{7}=B_{8}$, we have

$$
\begin{gather*}
W_{5}=W_{6}, \quad W_{7}=W_{8} \\
S_{1}=F_{1}+4 T B_{5}\left(W_{5} W_{7}\right)^{1 / 2} / R_{1} R_{2}\left[W_{5} W_{7}+\left(W_{1} W_{2} W_{3} W_{4}\right)^{1 / 2}\right] \tag{24}
\end{gather*}
$$

where

$$
\begin{aligned}
R_{1}= & \left(W_{1} W_{3}+W_{2} W_{4}+2 W_{5} W_{7}\right)^{1 / 2} \\
R_{2}= & \left(W_{1} W_{4}+W_{2} W_{3}+2 W_{5} W_{7}\right)^{1 / 2} \\
T= & \left(W_{1} W_{4}-W_{2} W_{3}\right)\left(W_{5}+W_{7}\right) /\left[R_{1}+\left(W_{1} W_{3}\right)^{1 / 2}+\left(W_{2} W_{4}\right)^{1 / 2}\right] \\
& +\left(W_{1} W_{4}-W_{2} W_{3}\right)\left[\left(W_{1} W_{3}\right)^{1 / 2}+\left(W_{2} W_{4}\right)^{1 / 2}\right] \\
& \times\left[W_{5}+W_{7}+\left(W_{1} W_{2}\right)^{1 / 2}+\left(W_{3} W_{4}\right)^{1 / 2}\right]^{-1} \\
& +\left[W_{2} W_{3}\left(W_{1}+W_{4}\right)-W_{1} W_{4}\left(W_{2}+W_{3}\right)-4 W_{5} W_{7} B_{5}\right] \\
& \times\left[R_{2}+\left(W_{1} W_{4}\right)^{1 / 2}+\left(W_{2} W_{3}\right)^{1 / 2}\right]^{-1} \\
& -2 B_{5}\left[\left(W_{1} W_{4}\right)^{1 / 2}+\left(W_{2} W_{3}\right)^{1 / 2}\right]
\end{aligned}
$$

4. SPONTANEOUS MAGNETIZATION

Consider a generalized checkerboard lattice where the Hamiltonian of the unit cell includes multispin interactions which involve only an even number of spins. The spontaneous magnetization $\langle\sigma\rangle$ of the internal spin σ is a function of the Boltzmann weights

$$
\begin{equation*}
B\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \mid \sigma\right)=B\left(-\sigma_{1},-\sigma_{2},-\sigma_{3},-\sigma_{4} \mid-\sigma\right)=\sum_{\sigma_{x}= \pm 1}^{\prime} \exp (-\beta H) \tag{25}
\end{equation*}
$$

where the prime means summing over all internal spins except σ. We define

$$
\begin{array}{rlrl}
B_{1}^{ \pm} & =B(++++\mid \pm), & & B_{2}^{ \pm}=B(+-+-\mid \pm) \\
B_{3}^{ \pm} & =B(++--\mid \pm), & & B_{4}^{ \pm}=B(+--+\mid \pm) \\
B_{5}^{ \pm} & =B(+-++\mid \pm), & & B_{6}^{ \pm}=B(+++-\mid \pm) \\
B_{7}^{ \pm} & =B(+---\mid \pm), & & B_{8}^{ \pm}=B(++-+\mid \pm) \\
R_{i} & =\left(B_{i}^{+}-B_{i}^{-}\right) /\left(B_{i}^{+}+B_{i}^{-}\right) & \tag{26}
\end{array}
$$

The network characterized by the 16 Boltzmann weights (25) is equivalent to a star network as shown in Fig. 5 with ten pairwise and five four-spin interactions such that

$$
\begin{equation*}
B\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \mid \sigma\right)=\rho \exp (E) \tag{27}
\end{equation*}
$$

Fig. 5. A star network with two-spin and four-spin interactions (only pairwise nearestneigbor interactions are shown).
where

$$
\begin{aligned}
E= & \sigma\left(J_{1} \sigma_{1}+J_{2} \sigma_{2}+J_{3} \sigma_{3}+J_{4} \sigma_{4}+K_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right. \\
& \left.+K_{2} \sigma_{3} \sigma_{4} \sigma_{1}+K_{3} \sigma_{4} \sigma_{1} \sigma_{2}+K_{4} \sigma_{1} \sigma_{2} \sigma_{3}\right) \\
& +J_{1}^{\prime} \sigma_{1} \sigma_{2}+J_{2}^{\prime} \sigma_{2} \sigma_{3}+J_{3}^{\prime} \sigma_{3} \sigma_{4}+J_{4}^{\prime} \sigma_{4} \sigma_{1} \\
& +L \sigma_{1} \sigma_{3}+L^{\prime} \sigma_{2} \sigma_{4}+K \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}
\end{aligned}
$$

It follows from (27) that we have the identity

$$
\begin{align*}
\langle\sigma\rangle= & \left\langle\operatorname { t a n h } \left(J_{1} \sigma_{1}+J_{2} \sigma_{2}+J_{3} \sigma_{3}+J_{4} \sigma_{4}+K_{1} \sigma_{2} \sigma_{3} \sigma_{4}\right.\right. \\
& \left.\left.+K_{2} \sigma_{3} \sigma_{4} \sigma_{1}+K_{3} \sigma_{4} \sigma_{1} \sigma_{2}+K_{4} \sigma_{1} \sigma_{2} \sigma_{3}\right)\right\rangle \\
= & \sum_{i=1}^{4} \lambda_{i}\left\langle\sigma_{i}\right\rangle+\mu_{1}\left\langle\sigma_{2} \sigma_{3} \sigma_{4}\right\rangle+\mu_{2}\left\langle\sigma_{3} \sigma_{4} \sigma_{1}\right\rangle \\
& +\mu_{3}\left\langle\sigma_{4} \sigma_{1} \sigma_{2}\right\rangle+\mu_{4}\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle \tag{28}
\end{align*}
$$

where

$$
\begin{aligned}
\lambda_{1}= & (A+B) / 8, \quad \mu_{1}=(A-B) / 8 \\
A= & \tanh \left(J_{1}+J_{2}+J_{3}+J_{4}+K_{1}+K_{2}+K_{3}+K_{4}\right) \\
& +\tanh \left(J_{1}-J_{2}+J_{3}-J_{4}+K_{1}-K_{2}+K_{3}-K_{4}\right) \\
& +\tanh \left(J_{1}+J_{2}-J_{3}-J_{4}+K_{1}+K_{2}-K_{3}-K_{4}\right) \\
& +\tanh \left(J_{1}-J_{2}-J_{3}+J_{4}+K_{1}-K_{2}-K_{3}+K_{4}\right) \\
B= & \tanh \left(J_{1}-J_{2}-J_{3}-J_{4}-K_{1}+K_{2}+K_{3}+K_{4}\right) \\
& +\tanh \left(J_{1}-J_{2}+J_{3}+J_{4}-K_{1}+K_{2}-K_{3}-K_{4}\right) \\
& +\tanh \left(J_{1}+J_{2}-J_{3}+J_{4}-K_{1}-K_{2}+K_{3}-K_{4}\right) \\
& +\tanh \left(J_{1}+J_{2}+J_{3}-J_{4}-K_{1}-K_{2}-K_{3}+K_{4}\right)
\end{aligned}
$$

and other λ_{i} and μ_{i} are obtained from λ_{1} and μ_{1} by cyclically permuting $1,2,3,4$. When $K_{i}=0,(28)$ reduces to (12). After some algebra we obtain

$$
\begin{equation*}
\lambda_{i}=\left(a_{i}+b_{i}\right) / 8, \quad \mu_{i}=\left(a_{i}-b_{i}\right) / 8 \tag{29}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{1}=R_{1}+R_{2}+R_{3}+R_{4}, & b_{1}=R_{5}+R_{6}+R_{7}+R_{8} \\
a_{2}=R_{1}-R_{2}+R_{3}-R_{4}, & b_{2}=-R_{5}+R_{6}-R_{7}+R_{8} \\
a_{3}=R_{1}+R_{2}-R_{3}-R_{4}, & b_{3}=R_{5}+R_{6}-R_{7}-R_{8} \\
a_{4}=R_{1}-R_{2}-R_{3}+R_{4}, & b_{4}=R_{5}-R_{6}-R_{7}+R_{8}
\end{array}
$$

When the Boltzmann weights satisfy the condition (3), the one-spin and three-spin correlations of the nodal spins are given by (7) and (21) and we have

$$
\begin{equation*}
\langle\sigma\rangle=M\left[\left(\lambda_{1}+\lambda_{3}\right) F_{1}+\left(\lambda_{2}+\lambda_{4}\right) F_{2}+\sum_{i=1}^{4} \mu_{i} S_{i}\right] \tag{30}
\end{equation*}
$$

Fisher ${ }^{(23)}$ proved that a triangular network of interactions with spinreversal symmyetry is equivalent to a triangle with three pairwise interactions. Therefore a checkerboard unit cell consisting of one or several triangular networks always satisfies the condition (3). The special case of the triangular checkerbroard lattice was studied by Lin. ${ }^{(24)}$

5. SUMMARY

I have obtained the three-spin correlation of the Ising model for the three nodal spins surrounding a unit cell of the generalized checkerboard lattice. The result is expressed in terms of Boltzmann weights of a unit cell of the checkerboard lattice without specifying its cell structure. The central theme of the calculation is the use of (12), in which $\left\langle\sigma_{5}\right\rangle$ is known from ref. 16 and the other one-spin correlations are known from ref. 17. The four unknown three-spin correlations are then obtained by solving (12) and three similar equations obtained by appropriate permutations of indices. The result is given by (21).

I have considered the Ising model on a generalized checkerboard lattice and derived the spontaneous magnetization of the internal spin within a unit cell. The spontaneous magnetization is a linear combination of the three-spin correlations. The result is given by (30).

ACKNOWLEDGMENTS

I thank Prof. R. J. Baxter and Dr. T. C. Choy for sending a copy of their preprint prior to publication. This research is supported by the National Science Council of the Republic of China.

REFERENCES

1. L. Onsager, Nuovo Cimento (Suppl.) 6:261 (1949).
2. C. N. Yang, Phys. Rev. 85:808 (1952).
3. C. H. Chang, Phys. Rev. 88:1422 (1952).
4. R. B. Potts, Phys. Rev. 88:352 (1952).
5. H. S. Green, Z. Phys. 171:129 (1963).
6. S. Naya, Prog. Theor. Phys. 11:53 (1954).
7. I. Syozi and S. Naya, Prog. Theor. Phys. 23:374 (1960).
8. R. J. Baxter, Proc. R. Soc. Lond. A 404:1 (1986).
9. K. Y. Lin, Phys. Lett. A 128:35 (1988).
10. R. J. Baxter and T. C. Choy, J. Phys. A 21:2143 (1988).
11. D. A. Huckaby, J. Phys. C 19:5477 (1986).
12. K. Y. Lin and J. L. Chen, J. Phys. A $20: 5695$ (1987).
13. K. Y. Lin and F. Y. Wu, J. Stat. Phys. 52:669 (1988).
14. R. J. Baxter, J. Phys. A 8:1797 (1975).
15. I. G. Enting, J. Phys. A 10:1737 (1977).
16. R. J. Baxter and T. C. Choy, Proc. R. Soc. Lond. A, to be published.
17. K. Y. Lin and F. Y. Wu, J. Phys. A 22:1121 (1989).
18. K. Y. Lin and M. Chen, Chin. J. Phys. 27:79 (1989).
19. F. Y. Wu, unpublished.
20. F. Y. Wu, J. Stat. Phys. 44:455 (1986).
21. T. C. Choy and R. J. Baxter, Phys. Lett. A 125:365 (1987).
22. R. J. Baxter, Phil. Trans. R. Soc. Lond. A 289:315 (1978).
23. M. E. Fishher, Phys. Rev. 113:969 (1959).
24. K. Y. Lin, Chin. J. Phys., to be published.

[^0]: ${ }^{1}$ Physics Department, National Tsing Hua University, Hsinchu, Taiwan.

